Download Springer Static Pdf 310 Art 1007 S13277 014 2617

We study supersonic flow past a convex corner which is surrounded past quiescent gas. When the pressure of the upstream supersonic flow is larger than that of the quiescent gas, there appears a stiff rarefaction wave to rarefy the supersonic gas. Meanwhile, a transonic characteristic discontinuity appears to split the supersonic flow behind the rarefaction wave from the static gas. In this paper, we use a wave front tracking method to establish structural stability of such a flow design under non-smooth perturbations of the upcoming supersonic catamenia. It is an initial-value/free-boundary trouble for the two-dimensional steady non-isentropic compressible Euler system. The main ingredients are careful assay of wave interactions and construction of suitable Glimm functional, to overcome the difficulty that the potent rarefaction wave has a large full variation.

Citation: Min Ding, Hairong Yuan. Stability of transonic jets with strong rarefaction waves for two-dimensional steady compressible Euler arrangement. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2911-2943. doi: ten.3934/dcds.2018125

References:
[1]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., iv (1997), 1-42.  doi: ten.1007/PL00001406.

[2]

A. Bressan, Hyperbolic Systems of Conservation Laws: The I-Dimensional Cauchy Problem, Oxford Lecture Serial in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.

[3]

1000.-Q. Yard. Chen, J. Kuang and Y. Zhang, Two-dimensional steady supersonic exothermically reacting Euler menstruation by Lipschitz angle walls, SIAM J. Math. Anal., 49 (2017), 818-873.  doi: 10.1137/16M1075089.

[4]

Chiliad. -Q. G. Chen, V. Kukreja and H. Yuan, Stability of transonic characteristic discontinuities in two-dimensional steady compressible Euler flows J. Math. Phys., 54 (2013), 021506, 24 pp. doi: 10.1063/i.4790887.

[5]

G.-Q. G. Chen, Five. Kukreja and H. Yuan, Well-posedness of transonic feature discontinuities in two-dimensional steady compressible Euler flows, Z. Angew. Math. Phys., 64 (2013), 1711-1727.  doi: 10.1007/s00033-013-0312-vi.

[half-dozen]

G.-Q. Chiliad. Chen, Y. Zhang and D. Zhu, Stability of compressible vortex sheets in steady supersonic Euler flows over Lipschitz walls, SIAM J. Math. Anal., 38 (2006/07), 1660-1693.  doi: 10.1137/050642976.

[7]

M.-Q. G. Chen, Y. Zhang and D. Zhu, Beingness and stability of supersonic Euler flows past Lipschitz wedges, Curvation. Rational Mech. Anal., 181 (2006), 261-310.  doi: x.1007/s00205-005-0412-3.

[eight]

R. Courant and 1000. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 12, Wiley-Interscience, New York, 1948.

[9]

C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4 th edition, Grundlehren der Mathematischen Wissenschaften [Primal Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2016.

[10]

M. Ding, Existence and stability of rarefaction wave to 1-D piston problem for the relativistic full Euler equations, J. Differential Equations, 262 (2017), 6068-6108.  doi: 10.1016/j.jde.2017.02.028.

[eleven]

M. Ding, Stability of rarefaction wave to the ane-D piston problem for exothermically reacting Euler equations Calc. Var. Partial Differential Equations, 56(2017), Fine art. 78, 49 pp. doi: ten.1007/s00526-017-1162-4.

[12]

Thousand. Ding, J. Kuang and Y. Zhang, Global stability of rarefaction wave to the 1-D piston problem for the compressible full Euler equations, J. Math. Anal. Appl., 448 (2017), 1228-1264.  doi: 10.1016/j.jmaa.2016.11.059.

[xiii]

G. Ding and Y. Li, Stability and not-relativistic limits of rarefaction moving ridge to the 1-D piston problem for the relativistic Euler equations Z. Angew. Math. Phys. 68 (2017), Fine art. 43, 32 pp. doi: 10.1007/s00033-017-0787-7.

[fourteen]

J. Glimm, Solutions in the big for nonlinear hyperbolic systems of equations, Comm. Pure. Appl. Math., 18 (1965), 697-715.  doi: 10.1002/cpa.3160180408.

[15]

H. Holden and North. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, 2 nd edition, Practical Mathematical Sciences, 152, Springer-Verlag, Berlin Heidelberg, 2015.

[16]

Five. Kukreja, H. Yuan and Q. Zhao, Stability of transonic jet with strong shock in two-dimensional steady compressible Euler flows, J. Differential Equations, 258 (2015), 2572-2617.  doi: 10.1016/j.jde.2014.12.017.

[17]

L. Liu, G. Xu and H. Yuan, Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations, Adv. Math., 291 (2016), 696-757.  doi: 10.1016/j.aim.2016.01.002.

[eighteen]

A. Qu and W. Xiang, Three-Dimensional Steady Supersonic Euler Catamenia By a Concave Cornered Wedge with Lower Pressure at the Downstream, Arch Rational Mech. Anal., 228 (2018), 431-476.  doi: 10.1007/s00205-017-1197-10.

[xix]

J. Smoller, Shock Waves and Reaction-Diffusion Equations, ii nd edition, Springer-Verlag, New York, 1994.

[xx]

Y.-K. Wang and H. Yuan, Weak stability of transonic contact discontinuities in iii-dimensional steady not-isentropic compressible Euler flows, Z. Angew. Math. Phys., 66 (2015), 341-388.  doi: ten.1007/s00033-014-0404-y.

[21]

Z. Wang and Y. Zhang, Steady supersonic flow past a curved cone, J. Differential Equations, 247 (2009), 1817-1850.  doi: x.1016/j.jde.2009.05.010.

[22]

Y. Zhang, Steady supersonic flow over a bending wall, Nonlinear Anal. Existent World Appl., 12 (2011), 167-189.  doi: 10.1016/j.nonrwa.2010.06.006.

prove all references

References:
[1]

D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., four (1997), 1-42.  doi: 10.1007/PL00001406.

[two]

A. Bressan, Hyperbolic Systems of Conservation Laws: The Ane-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.

[3]

K.-Q. G. Chen, J. Kuang and Y. Zhang, Two-dimensional steady supersonic exothermically reacting Euler flow past Lipschitz angle walls, SIAM J. Math. Anal., 49 (2017), 818-873.  doi: 10.1137/16M1075089.

[four]

G. -Q. Thousand. Chen, V. Kukreja and H. Yuan, Stability of transonic feature discontinuities in two-dimensional steady compressible Euler flows J. Math. Phys., 54 (2013), 021506, 24 pp. doi: 10.1063/i.4790887.

[5]

G.-Q. G. Chen, V. Kukreja and H. Yuan, Well-posedness of transonic characteristic discontinuities in ii-dimensional steady compressible Euler flows, Z. Angew. Math. Phys., 64 (2013), 1711-1727.  doi: 10.1007/s00033-013-0312-6.

[vi]

G.-Q. G. Chen, Y. Zhang and D. Zhu, Stability of compressible vortex sheets in steady supersonic Euler flows over Lipschitz walls, SIAM J. Math. Anal., 38 (2006/07), 1660-1693.  doi: 10.1137/050642976.

[7]

G.-Q. One thousand. Chen, Y. Zhang and D. Zhu, Existence and stability of supersonic Euler flows past Lipschitz wedges, Curvation. Rational Mech. Anal., 181 (2006), 261-310.  doi: 10.1007/s00205-005-0412-iii.

[8]

R. Courant and Grand. O. Friedrichs, Supersonic Flow and Shock Waves, Applied Mathematical Sciences, Vol. 12, Wiley-Interscience, New York, 1948.

[ix]

C. 1000. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 4 thursday edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325, Springer-Verlag, Berlin, 2016.

[ten]

M. Ding, Being and stability of rarefaction moving ridge to 1-D piston problem for the relativistic total Euler equations, J. Differential Equations, 262 (2017), 6068-6108.  doi: ten.1016/j.jde.2017.02.028.

[11]

Chiliad. Ding, Stability of rarefaction moving ridge to the 1-D piston trouble for exothermically reacting Euler equations Calc. Var. Partial Differential Equations, 56(2017), Fine art. 78, 49 pp. doi: x.1007/s00526-017-1162-iv.

[12]

M. Ding, J. Kuang and Y. Zhang, Global stability of rarefaction moving ridge to the ane-D piston problem for the compressible full Euler equations, J. Math. Anal. Appl., 448 (2017), 1228-1264.  doi: 10.1016/j.jmaa.2016.11.059.

[xiii]

Chiliad. Ding and Y. Li, Stability and non-relativistic limits of rarefaction moving ridge to the 1-D piston problem for the relativistic Euler equations Z. Angew. Math. Phys. 68 (2017), Art. 43, 32 pp. doi: 10.1007/s00033-017-0787-7.

[14]

J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure. Appl. Math., eighteen (1965), 697-715.  doi: ten.1002/cpa.3160180408.

[15]

H. Holden and N. H. Risebro, Front end Tracking for Hyperbolic Conservation Laws, 2 nd edition, Applied Mathematical Sciences, 152, Springer-Verlag, Berlin Heidelberg, 2015.

[sixteen]

V. Kukreja, H. Yuan and Q. Zhao, Stability of transonic jet with strong shock in two-dimensional steady compressible Euler flows, J. Differential Equations, 258 (2015), 2572-2617.  doi: ten.1016/j.jde.2014.12.017.

[17]

L. Liu, G. Xu and H. Yuan, Stability of spherically symmetric subsonic flows and transonic shocks under multidimensional perturbations, Adv. Math., 291 (2016), 696-757.  doi: 10.1016/j.aim.2016.01.002.

[18]

A. Qu and West. Xiang, 3-Dimensional Steady Supersonic Euler Menstruum Past a Concave Cornered Wedge with Lower Pressure at the Downstream, Arch Rational Mech. Anal., 228 (2018), 431-476.  doi: 10.1007/s00205-017-1197-ten.

[19]

J. Smoller, Stupor Waves and Reaction-Improvidence Equations, 2 nd edition, Springer-Verlag, New York, 1994.

[20]

Y.-G. Wang and H. Yuan, Weak stability of transonic contact discontinuities in 3-dimensional steady not-isentropic compressible Euler flows, Z. Angew. Math. Phys., 66 (2015), 341-388.  doi: ten.1007/s00033-014-0404-y.

[21]

Z. Wang and Y. Zhang, Steady supersonic flow by a curved cone, J. Differential Equations, 247 (2009), 1817-1850.  doi: 10.1016/j.jde.2009.05.010.

[22]

Y. Zhang, Steady supersonic flow over a bending wall, Nonlinear Anal. Real World Appl., 12 (2011), 167-189.  doi: ten.1016/j.nonrwa.2010.06.006.

Effigy ane. A transonic characteristic discontinuity separating supersonic menstruation behind the rarefaction wave and the surrounding static gas.

[1]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Detached and Continuous Dynamical Systems, 1995, 1 (4) : 555-584. doi: 10.3934/dcds.1995.1.555

[ii]

Feimin Huang, Yi Wang, Tong Yang. Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity. Kinetic and Related Models, 2010, 3 (four) : 685-728. doi: 10.3934/krm.2010.iii.685

[3]

Jong-Shenq Guo, Hirokazu Ninomiya, Mentum-Chin Wu. Existence of a rotating wave design in a disk for a moving ridge front interaction model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049

[4]

Stefano Bianchini. Interaction estimates and Glimm functional for general hyperbolic systems. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 133-166. doi: x.3934/dcds.2003.9.133

[5]

Huancheng Yao, Haiyan Yin, Changjiang Zhu. Stability of rarefaction moving ridge for the compressible not-isentropic Navier-Stokes-Maxwell equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1297-1317. doi: x.3934/cpaa.2021021

[half dozen]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction moving ridge with vacuum for a ane-dimensional compressible non-Newtonian fluid. Communications on Pure and Practical Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

[vii]

Feng Xie. Nonlinear stability of combination of viscous contact wave with rarefaction waves for a 1D radiation hydrodynamics model. Detached and Continuous Dynamical Systems - B, 2012, 17 (iii) : 1075-1100. doi: 10.3934/dcdsb.2012.17.1075

[viii]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, ix (3) : 469-514. doi: 10.3934/krm.2016004

[9]

Qingqing Liu, Xiaoli Wu. Stability of rarefaction moving ridge for sticky vasculogenesis model. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022034

[x]

Fabio Ancona, Andrea Marson. On the Glimm Functional for general hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 44-53. doi: 10.3934/proc.2011.2011.44

[11]

Eun Heui Kim, Charis Tsikkou. Two dimensional Riemann problems for the nonlinear moving ridge system: Rarefaction wave interactions. Detached and Continuous Dynamical Systems, 2017, 37 (12) : 6257-6289. doi: ten.3934/dcds.2017271

[12]

Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 985-1014. doi: ten.3934/cpaa.2013.12.985

[13]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped moving ridge equations. Kinetic and Related Models, 2013, half dozen (four) : 729-760. doi: 10.3934/krm.2013.6.729

[14]

Gui-Qiang Chen, Jun Chen, Mikhail Feldman. Transonic flows with shocks by curved wedges for the total Euler equations. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4179-4211. doi: ten.3934/dcds.2016.36.4179

[15]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the ii-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 419-430. doi: 10.3934/dcds.2000.6.419

[16]

Zhilei Liang. Convergence rate of solutions to the contact aperture for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[17]

Ademir Pastor. On iii-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2217-2242. doi: ten.3934/cpaa.2019100

[18]

Debora Amadori, Wen Shen. Front tracking approximations for slow erosion. Discrete and Continuous Dynamical Systems, 2012, 32 (five) : 1481-1502. doi: 10.3934/dcds.2012.32.1481

[xix]

Teng Wang, Yi Wang. Nonlinear stability of planar rarefaction wave to the three-dimensional Boltzmann equation. Kinetic and Related Models, 2019, 12 (three) : 637-679. doi: 10.3934/krm.2019025

[twenty]

Christian Rohde, Wenjun Wang, Feng Xie. Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiations hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure and Practical Analysis, 2013, 12 (5) : 2145-2171. doi: ten.3934/cpaa.2013.12.2145

parkertworris.blogspot.com

Source: https://www.aimsciences.org/article/doi/10.3934/dcds.2018125

0 Response to "Download Springer Static Pdf 310 Art 1007 S13277 014 2617"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel